Archive

Archive for the ‘Pivotal Container Service’ Category

NSX-T 2.2 – Error 100 when trying to enum Firewall Rules

08/29/2018 Comments off

After upgrading to NSX-T 2.2, my environment began throwing this error in the GUI when I tried to navigate to the firewall section or any router.  In addition, the nsx-cli shell script for cleanup was failing every time with a similar firewall-rule-related error.

Searching for a bitm I stumbled onto KB 56611: Upgrading NSX-T manager from 2.1.0.0 to 2.2.0.0 reports “General Error has occurred” on Firewall’s General UI section.

Down at the bottom of the KB, it essentially states that if you’ve already upgraded to 2.2 from 2.1, you’ll have to replace a jar file in order to resolve the problem.  Oh, and you have to open a ticket to get the .jar.

So, if you run into this – and you receive the nsx-firewall-1.0.jar file – here’s the steps for resolution:

    1. SSH into the NSX Manager as root (not admin)
    2. Navigate to /opt/vmare/proton-tomcat/webapps/nsxapi/WEB-INF/lib
    3. Copy the existing nsx-firewall-1.0.jar file elsewhere (I copied it to home and SCP’d it out from there)
    4. Copy the new nsx-firewall-1.0.jar file into this folder. (I put it on an local webserver and pulled it down with wget)
    5. Change the owner of the jar to uproton:

      chown uproton:uproton nsx-firewall-1.0.jar

    6. Change the permissions to match the other files:

      chmod o-r nsx-firewall-1.0.jar

    7. Reboot the NSX Manager
    8. Enjoy being able to see and edit firewall rules again!

 

Advertisements

Automating PKS Upgrades

05/22/2018 Comments off

Last night, Pivotal announced new versions of PKS and Harbor, so I thought it’s time to simplify the upgrade process. Here is a concourse pipeline that essentially aggregates the upgrade-tile pipeline so that PKS and Harbor are upgraded in one go.

What it does:

  1. Runs on a schedule – you set the time and days it may run
  2. Downloads the latest version of PKS and Harbor from Pivnet- you set the major.minor version range
  3. Uploads the PKS and Harbor releases to your BOSH director
  4. Determines whether the new release is missing a stemcell, downloads it from PivNet and uploads it to BOSH director
  5. Stages the tiles/releases
  6. Applies changes

What you need:

  1. A working Concourse instance that is able to reach the Internet to pull down the binaries and repo
  2. The fly cli and credentials for your Concourse.
  3. A token from your PivNet account
  4. An instance of PKS 1.0.2 or 1.0.3 AND Harbor 1.4.x deployed on Ops Manager
  5. Credentials for your Ops Manager
  6. (optional) A token from your GitHub account

How to use the pipeline:

  1. Download params.yml and pipeline.yml from here.
  2. Edit the params.yml by replacing the values in double-parentheses with the actual value. Each line has a bit explaining what it’s expecting.  For example, ((ops_mgr_host)) becomes opsmgr.pcf1.domain.local
    • Remove the parens
    • If you have a GitHub Token, pop that value in, otherwise remove ((github_token))
    • The current pks_major_minor_version regex will get the latest 1.0.x.  If you want to pin it to a specific version, or when PKS 1.1.x is available, you can make those changes here.
    • The ops_mgr_usr and ops_mgr_pwd credentials are those you use to logon to Ops Manager itself.  Typically set when the Ops Manager OVA is deployed.
    • The schedule params should be adjusted to a convenient time to apply the upgrade.  Remember that in addition to the PKS Service being offline (it’s a singleton) during the upgrade, your Kubernetes clusters may be affected if you have the “Upgrade all Clusters” errand set to run in the PKS configuration, so schedule wisely!

  3. Open your cli and login to concourse with fly

    fly -t concourse login -c http://concourse.domain.local:8080 -u username -p password

  4. Set the new pipeline. Here, I’m naming the pipeline “PKS_Upgrade”. You’ll pass the pipeline.yml with the “-c” param and your edited params.yml with the “-l” param

    fly -t concourse sp -p PKS_Upgrade -c pipeline.yml -l params.yml

    Answer “y” to “Apply Configuration”…

  5. Unpause the pipeline so it can run when in the scheduled window

    fly -t concourse up -p PKS_Upgrade

  6. Login to the Concourse web to see our shiny new pipeline!

    If you don’t want to deal with the schedule and simply want it to upgrade on-demand, use the pipeline-nosched.yml instead of pipeline.yml, just be aware that when you unpause the pipeline, it’ll start doing its thing.  YMMV, but for me, it took about 8 minutes to complete the upgrade.

Behind the scenes
It’s not immediately obvious how the pipeline does what it does. When I first started out, I found it frustrating that there just isn’t much to the pipeline itself. To that end, I tried making pipelines that were entirely self-contained. This was good in that you can read the pipeline and see everything it’s doing; plus it can be made to run in an air-gapped environment. The downside is that there is no separation, one error in any task and you’ll have to edit the whole pipeline file.
As I learned a little more and poked around in what others were doing, it made sense to split the “tasks” out, keep them in a GitHub public repo and pull it down to run on-demand.

Pipelines generally have two main sections; resources and jobs.
Resources are objects that are used by jobs. In this case, the binary installation files, a zip of the GitHub repo and the schedule are resources.
Jobs are (essentially) made up of plans and plans have tasks.
Each task in most pipelines uses another source yml. This task.yml will indicate which image concourse should build a container from and what it should do on that container (typically, run a script). All of these task components are in the GitHub repo, so when the pipeline job runs, it clones the repo and runs the appropriate task script in a container built on an image pulled from dockerhub.

More info
I’ve got a several pipelines in the repo.   Some of them do what they’re supposed to. 🙂 Most of them are derived from others’ work, so many thanks to Pivotal Services and Sabha Parameswaran

PKS and NSX-T: I did everything wrong

05/15/2018 Comments off

I’ve fought with PKS and NSX-T for a month or so now. I’ll admit it: I did everything wrong, several times. One thing for certain, I know how NOT to configure it. So, now that I’ve finally gotten past my configuration issues, it makes sense to share the pain lessons learned.

  1. Set your expectations correctly. PKS is literally a 1.0 product right now. It’s getting a lot of attention and will make fantastic strides very quickly, but for now, it can be cumbersome and confusing. The documentation is still pretty raw. Similarly, NSX-T is very young. The docs are constantly referring you to the REST API instead of the GUI – this is fine of course, but is a turn-off for many. The GUI has many weird quirks. (when entering a tag, you’ll have to tab off of the value field after entering a value, since it is only checked onBlur)
  2. Use Chrome Incognito  NSX-T does not work in Firefox on Windows. It works in Chrome, but I had issues where the cache would problems (the web GUI would indicate that backup is not configured until I closed Chrome, cleared cache and logged in again)
  3. Do not use exclamation point in the NSX-T admin password Yep, learned that the hard way. Supposedly, this is resolved in PKS 1.0.3, but I’m not convinced as my environment did not wholly cooperate until I reset the admin password to something without an exclamation point in it
  4. Tag only one IP Pool with ncp/external I needed to build out several foundations on this environment and wanted to keep them in discrete IP space by created multiple “external IP Pools” and assigning each to its own foundation. Currently the nsx-cli.sh script that accompanies PKS with NSX-T only looks for the “ncp/external” tag on IP Pools, if more than one is found, it quits. I suppose you could work around this by forking the script and passing an additional “cluster” param, but I’m certain that the NSBU is working on something similar
  5. Do not take a snapshot of the NSX Manager This applies to NSX for vSphere and NSX-T, but I have made this mistake and it was costly. If your backup solution relies on snapshots (pretty much all of them do), be sure to exclude the NSX Manager and…
  6. Configure scheduled backups of NSX Manager I found the docs for this to be rather obtuse. Spent a while trying to configure a FileZilla SFTP or even IIS-FTP server until it finally dawned on me that it really is just FTP over SSH. So, the missing detail for me was that you’ll just need a linux machine with plenty of space that the NSX Manager can connect to – over SSH – and dump files to. I started with this procedure, but found that the permissions were too restrictive.
  7. Use concourse pipelines This was an opportunity for me to really dig into concourse pipelines and embrace what can be done. One moment of frustration came when PKS 1.0.3 was released and I discovered that the parameters for vSphere authentication had changed. In PKS 1.0 through 1.0.2, there was a single set of credentials to be used by PKS to communicate with vCenter Server. As of 1.0.3, this was split into credentials for master and credentials for workers. So, the pipeline needed a tweak in order to complete the install. I ended up putting in a conditional to check the release version, so the right params are populated. If interested, my pipelines can be found at https://github.com/BrianRagazzi/concourse-pipelines
  8. Count your Load-Balancers In NSX-T, the load-balancers can be considered a sort of empty appliance that Virtual Servers are attached to and can itself attach to a Logical Router. The load-balancers in-effect require pre-allocated resources that must come from an Edge Cluster. The “small” load-balancer consumes 2 CPU and 4GB RAM and the “Large” edge VM provides 8 CPU and 16GB RAM. So, a 2-node Edge Cluster can support up to FOUR active/standby Load-Balancers. This quickly becomes relevant when you realize that PKS creates a new load-balancer when a new K8s cluster is created. If you get errors in the diego databse with the ncp job when creating your fifth k8s cluster, you might need to add a few more edge nodes to the edge cluster.
  9. Configure your NAT rules as narrow as you can. I wasted a lot of time due to mis-configured NAT rules. The log data from provisioning failures did not point to NAT mis-configuration, so wild geese were chased.  Here’s what finally worked for me:
    Router Priority Action Source Destination Translated Description
    Tier1 PKS Management 512 No NAT [PKS Management CIDR] [PKS Service CIDR] Any No NAT between management and services
    [PKS Service CIDR] [PKS Management CIDR]
    1024 DNAT Any [External IP for Ops Manager] [Internal IP for Ops Manager] So Ops Manager is reachable
    [External IP for PKS Service] [Internal IP for PKS Service] (obtain from Status tab of PKS in Ops Manager) So PKS Service (and UAA) is reachable
    SNAT [Internal IP for PKS Service] Any [External IP for PKS Service] Return Traffic for PKS Service
    2048 [PKS Management CIDR] [Infrastructure CIDR] (vCenter Server, NSX Manager, DNS Servers) [External IP for Ops Manager] So PKS Management can reach infrastructure
    [PKS Management CIDR] [Additional Infrastructure] (NTP in this case) [External IP for Ops Manager]
    Tier1 PKS Services 512 No NAT [PKS Service CIDR] [PKS Management CIDR] Any No NAT between management and services
    [PKS Management CIDR] [PKS Service CIDR]
    1024 SNAT [PKS Service CIDR] [Infrastructure CIDR] (vCenter Server, NSX Manager, DNS Servers) [External IP] (not the same as Ops Manager and PKS Service, but in the same L3 network) So PKS Services can reach infrastructure
    [PKS Service CIDR] [Additional Infrastructure] (NTP in this case) [External IP]